Mucus secretion from single submucosal glands of pig. Stimulation by carbachol and vasoactive intestinal peptide.

نویسندگان

  • Nam Soo Joo
  • Yamil Saenz
  • Mauri E Krouse
  • Jeffrey J Wine
چکیده

Secretion rates of >700 individual glands in isolated tracheal mucosa from 56 adult pigs were monitored optically. "Basal" secretion of 0.7 +/- 0.1 nl x min(-1) gland(-1) was observed 1-9 h post-harvest but was near zero on day 2. Secretion to carbachol (10 microm) peaked at 2-3 min and then declined to a sustained phase. Peak secretion was 12.4 +/- 1.1 nl x min(-1) gland(-1); sustained secretion was approximately one-third of peak secretion. Thapsigargin (1 microm) increased secretion from 0.1 +/- 0.05 to 0.7 +/- 0.2 nl x min(-1) gland(-1); thapsigargin did not cause contraction of the trachealis muscles. Isoproterenol and phenylephrine (10 microm each) were ineffective, but vasoactive intestinal peptide (1 microm) and forskolin (10 microm) each produced sustained secretion of 1.0 +/- 0.5 and 1.7 +/- 0.2 nl x min(-1) gland(-1), respectively. The density of actively secreting glands was 1.3/mm(2). Secretion to either carbachol or forskolin was inhibited (approximately 50%) by either bumetanide or HCO(3)(-) removal and inhibited approximately 90% by the combined treatments. Mucus secreted in response to carbachol or forskolin was acidic by approximately 0.2 pH units relative to the bath and remained acidic by approximately 0.1 pH units after bumetanide. The strong secretory response to vasoactive intestinal peptide, the acidity of [cAMP](i)-stimulated mucus, and its inhibition by bumetanide were unexpected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process.

Chronic bacterial airway infections are the major cause of mortality in cystic fibrosis (CF). Normal airway defenses include reflex stimulation of submucosal gland mucus secretion by sensory neurons that release substance P (SubP). CFTR is an anion channel involved in fluid secretion and mutated in CF; the role of CFTR in secretions stimulated by SubP is unknown. We used optical methods to meas...

متن کامل

Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice.

Submucosal glands line the cartilaginous airways and produce most of the antimicrobial mucus that keeps the airways sterile. The glands are defective in cystic fibrosis (CF), but how this impacts airway health remains uncertain. Although most CF mouse strains exhibit mild airway defects, those with the C57Bl/6 genetic background have increased airway pathology and susceptibility to Pseudomonas....

متن کامل

Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis.

Cystic fibrosis (CF) is caused by dysfunction of the CF transmembrane conductance regulator (CFTR), an anion channel whose dysfunction leads to chronic bacterial and fungal airway infections via a pathophysiological cascade that is incompletely understood. Airway glands, which produce most airway mucus, do so in response to both acetylcholine (ACh) and vasoactive intestinal peptide (VIP). CF gl...

متن کامل

Mucociliary clearance and submucosal gland secretion in the ex vivo ferret trachea.

In many species submucosal glands are an important source of tracheal mucus, but the extent to which mucociliary clearance (MCC) depends on gland secretion is unknown. To explore this relationship, we measured basal and agonist-stimulated MCC velocities in ex vivo tracheas from adult ferrets and compared the velocities with previously measured rates of ferret glandular mucus secretion (Cho HJ, ...

متن کامل

Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands.

Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 31  شماره 

صفحات  -

تاریخ انتشار 2002